Third Generation (3G) Wireless: Where is it Going?

Dr. Theodore S. Rappaport

James S. Tucker Professor Mobile and Portable Radio Research Group Bradley Department of Electrical Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061 http://www.mprg.ee.vt.edu

Virginia III Tech

Mobile and Portable Radio Research Group

Copyright 1998, T. S. Rappaport, all rights reserved

The Creation of IMT-2000

- A decision was made at WARC-92 to identify a global spectrum in a common frequency band around 2000 MHz
- Spectrum would have both terrestrial and satellite components
- Originally known as FPLMTS (Future Public Land Mobile Telecommunications Systems)

Key Features of IMT-2000

- Emphasizing worldwide commonality in design
- Compatibility of services within fixed networks and within IMT-2000
- High quality
- Use of small pocket-terminal worldwide

Source: Working Document of Security Principles for FPLMTS, 1994

The Evolution of the Standard

- Originally, IMT-2000 was to embrace a single worldwide wireless standard.
- Unable to unite 2G systems under one 3G technology
- IMT-2000 will now be seen as a "family of standards" to ensure both current investments and global compatibility

Source: Personal Communications Newsletter, January 12, 1998

IMT-2000 Frequencies

Key Players in the Debate

- CDMA: U.S. and Asia focused, fueled by Qualcomm, Lucent, and Motorola¹
- GSM: Europe focused, fueled by Ericsson, Nokia, Nortel, Alcatel²
- ✤ IS-136: proposed high speed data (HSD) interface³
- As Asian subscriptions increase, CDMA could overtake GSM as most popular cellular technology⁴

Sources: 1, AOL Website, July 16, 1998, http://www.aol.com

2, Online Telecommunications Magazine, June 1998

3, Ojanperä, "Development of 3G Radio Technologies"

4, CDG Website, June 1998, http://www.cdg.org

3G Technologies Around the World

© 1998, T. S. Rappaport, all rights reserved

Source: CDG Website, http://www.cdg.org/cdma_world.html

The Evolution of European Wireless Systems

- Systems developed by the High Speed Data Group (HSD) of the Global TDMA Forum (GTF) within the Universal Wireless Communications Consortium (UWCC).
- The EDGE (Enhanced Data for GSM/Global Evolution) system would enhance GSM system through higher level modulations
- The Double EDGE system would provide two carrier spacings, 200 kHz and 1.6 MHz, to allow for the IS-136 air interface
- Provides less expensive equipment in a more timely fashion and so provides economies of scale

Current Status of IMT-2000

- 10 terrestrial and 5 satellite proposals were received at ITU--June, 1998
- Proposals will be evaluated by groups representing various countries--July 1998
- Accepted proposals will be announced--Fall, 1998

Source: Wireless Week, July 6, 1998

ITU Timetable for 3G Policy

TIME SCHEDULE FOR ITU-R IMT-2000 STANDARDS DEVELOPMENT ACTIVITIES

Source: ITU Website, http://www.itu.int/imt/2-radio-dev/time/index.html

IMT-2000 Proposals: Terrestrial (of 10 submitted)

*** DECT, ETSI Project**

(Digital Enhanced Cordless Communications)

*** UWC-136, USA TIA TR45.3**

(Universal Wireless Communications)

*** WIMS/W-CDMA, USA TIA TR46.1**

(Wireless Multimedia & Messaging Services/ Wideband CDMA)

Source: ITU Website, http://www.itu.int/imt/2-radio-dev/rtt/index.html

IMT-2000 Proposals: Terrestrial (of 10 submitted)

*** TD-SCDMA, China ATT**

(Time-Division Synchronous CDMA)

& W-CDMA, Japan ARIB

(Wideband CDMA)

*** CDMA II, S. Korea TTA**

(Asynchronous DS-CDMA)

Source: ITU Website, http://www.itu.int/imt/2-radio-dev/rtt/index.html

IMT-2000 Proposals: Terrestrial (of 10 submitted)

UTRA: W-CDMA, ETSI SMG2 (UMTS Terrestrial Radio Access: Wideband CDMA)

* NA: W-CDMA, USA T1P1-ATIS

(North American: Wideband CDMA)

* cdma2000, USA TIA TR45.5

(Wideband CDMA: IS-95)

& CDMA I, S. Korea TTA

(Multiband Synchronous DS-CDMA)

IMT-2000 Proposals: Satellite (of 5 submitted)

 SAT-CDMA, S. Korea Telecommunication Technologies Association (TTA)

(49 LEO sats in 7 planes at 2000 km)

* SW-CDMA, European Space Administration (ESA)

(Satellite Wideband CDMA)

* SW-CTDMA, ESA

(Satellite Wideband hybrid CDMA/TDMA)

IMT-2000 Proposals: Satellite (of 5 submitted)

 ICO RTT, ICO Global Communications (Inmarsat affiliate based in UK)

(10 MEO sats in 2 planes at 10390 km)

Horizons, Inmarsat (International Marine Satellites)

(Horizons satellite system)

Source: ITU Website, http://www.itu.int/imt/2-radio-dev/rtt/index.html

DECT (Digital Enhanced Cordless Communications)

- Authored by the European Telecommunications Standards Institute
- Interworking to connectionless networks: Ethernet, Token Ring LANs, TCP/IP, MANs
- Generic data link service
- * Multimedia messaging service
- Channel setup: < 50 ms</p>
- * Error rates better than 10⁻⁹
- Throughput rate of up to 552 kbit/s

(2-level modulation, higher with 4- and 8-level)

UWC-136 (Universal Wireless Communications)

- Authored by the Universal Wireless Communications Consortium)
- Spectrum efficiency:

at least 0.45 Mbits/s/Mhz/cell

- * Fits into existing IS-136 RF frequency plan
- Microcell and macrocell performance comparable:

pedestrian (3 km/h): up to 384 kbit/s low speed vehicular (<100 km/h): up to 384 kbit/s high speed vehicular (100-500 km/h): up to 144 kbit/s

Source: http://www.itu.int/imt/2-radio-dev/rtt/usa/tia/uwc-136.pdf

WIMS/W-CDMA (Wireless Multimedia and Messaging Services/Wideband CDMA)

- Principal author: Golden Bridge Technology
- Data rates of 8 kbps, 16 kbps, 32 kbps, 64 kbps, 144 kbps, 384 kbps, T1/E1
- Multimedia operating system
- Exploits software radio technology providing backward compatibility
- Usable in all environments: WLL, indoor, pedestrian, vehicular
- * Duplex method: FDD
- Multiple access method: DS-CDMA

Source: http://www.itu.int/imt/2-radio-dev/rtt/usa/tia/wims.pdf

TD-SCDMA (Time-Division Synchronous CDMA)

- * Authored by China's Academy of Telecommunications Technology
- Utilizes new technologies: synchronous CDMA, smart antennas, software radio
- Similar to IS-95 system
- * Each RF channel equals:

8 TDMA time slots=16 CDMA code channels

Code channel identification:

by specific Walsh code XOR a common pseudo random (PN) spreading code

Source: http://www.itu.int/imt/2-radio-dev/rtt/chn

W-CDMA (Wideband CDMA)

 Authored by Japan's Association of Radio Industries and Businesses (ARIB)

Source: ITU Website, http://www.itu.int/imt/2-radio-dev/rtt/index.html

CDMA II (Asynchronous DS-CDMA)

- Authored by S. Korea's Telecommunication Technologies Association
- * Adopted inter-cell asynchronous mode
- Multi-bandwidth spreading technique supports multimedia services
- High-data-rate capabilities provided by wide-band spreading and multi-code schemes
- * Multiple access method: DS-CDMA
- Duplexing method: FDD
- * Chip rate: 1.024/4.096/8.192/16.384 Mcps

Source: http://www.itu.int/imt/2-radio-dev/rtt/kor/tta2

NA: W-CDMA (North American: Wideband CDMA)

- Principal author: Ericsson
- SSM DCS-1900 variant
- * 4.096 Mcps spread spectrum overlap on GSM
- * Duplex scheme: FDD/TDD
- Multiple access scheme: DS-CDMA
- Support for: inter-frequency handover, future technologies (adaptive antennas, transmitter diversity), high-data-rate transmission (384 kbps with wide-area coverage, 2 Mbps with local coverage)

Source: http://www.itu.int/imt/2-radio-dev/rtt/usa/t1p1/wcdma_na.pdf

CDMA I (Multiband Synchronous DS-CDMA)

- Authored by S. Korea's Telecommunication Technologies Association
- Proposed multiband system of 0.9216/3.6864/14.7456
 Mcps
- Base station coordination: synchronous between stations with optional asynchronous mode
- Discontinuous transmission possible with pilot channel aided coherent scheme
- Enhances power efficiency in reverse link: BPSK data/OCQPSK (orthogonal complex QPSK) for low rate and QPSK/OCQPSK for high rate services

Source: http://www.itu.int/imt/2-radio-dev/rtt/kor/tta1/tta_rtt1.pdf

UTRA (UMTS Terrestrial Radio Access: Wideband CDMA)

- Represents ETSI Special Mobile Group's attempt to ensure backward compatibility for GSM
- Product of the harmonization of ARIB & UTMS
- * Duplex method: FDD and TDD
- Will operate in indoor, pedestrian, vehicular, and mixed-cell environments
- S. Rappapor, all riggeserved
 Will most likely adopt Turbo codes for Source: http://www.itu.int/imt/2-radio-dev/rtt/etsi/utra.pdf

UTRA Key Technical Characteristics

- Carrier spacing: flexible in the range 4.4-5.2 MHz (200 kHz carrier raster)
- * Chip rate: 4.096/8.192/16.384 Mcps
- Frame length: 10 ms
- Spreading modulation: balanced QPSK (forward link), dual channel QPSK (reverse link)
- Coherent detection: time multiplexed pilot
- Physical control channel: time multiplexed (forward link), I&Q multiplexed (reverse link)

© 1998, T. S. Rappaport, all rights reserved

UTRA Key Technical Characteristics

- * Power control: open and closed loop (1.6 kHz)
- Multi-rate/variable-rate scheme: variable spreading factor and multi-code
- Channel coding scheme: convolutional coding (rate 1/2-1/3), optional outer Reed-Solomon coding (rate 4/5)
- Inter-base station synchronization: FDD mode: no accurate synchronization needed, TDD mode: synchronization needed

Source: Ojanperä, T., "Development of 3G Radio Technologies," Nokia Research Center

cdma2000 (Wideband CDMA: IS-95): one U.S. View of IMT-2000

The Pros and Cons of CDMA

Advantages include:¹

- Voice activities cycles
- No hard handoff
- No guard time in CDMA
- Less fading
- Capacity advantage
- No frequency mgmt. or assignment needed
- Soft capacity
- Coexistence

Drawbacks include:

- Rake receiver needed in each portable receiver
- Island cells occur if time sync is off between base stations
- Not suitable for microcell and in-building systems

Source: 1, Oregon State Univ. Website, http://www.ece.orst.edu/~rodrigfr/cdma/tutorial.html

J-STD-008 AND TSB74 Key Pioneering Characteristics

Multiple rates (Rate Set 1 and 2)

-- Rate Set 2: 1800, 3600, 7200, 14400 bps

Multiple bands (cellular and PCS)

Faster Forward link power control

--Erasure indicator bit

Source: Tiedemann, E., The Evolution of CDMA, 8th Virginia Tech Symposium on Wireless Personal Communications

IS-95-B Key Characteristics

* Higher rate operation

---Up to 76.8 kbps (Rate Set 1) and 115. 2 kbps (Rate Set 2)

- Supplemental channels
- Independent soft handoff of fundamental and supplemental channels
- * Searching on another frequency for hard handoff
- Soft channel assignment, access handoff, and access probe handoff
- Enhanced soft handoff reporting based upon total
 E c /I 0

Source: Tiedemann, E., <u>The Evolution of CDMA</u>, 8th Virginia Tech Symposium on Wireless Personal Communications

cdma2000 Key Characteristics

- Solution Strain Stra
 - 1.2288, 3.6864, 7.3728, 11.0592, and 14.7456 Mcps
- Multi- carrier operation for overlays of existing systems
- * Fast forward link power control
- Forward link transmit diversity
- Turbo coding
- Auxiliary pilots

Source: Tiedemann, E., <u>The Evolution of CDMA</u>, 8th Virginia Tech Symposium on Wireless Personal Communications

cdma2000 Key Characteristics

Coherent reverse link

BPSK- like modulation Continuous transmission Peak to average reduction

- Enhanced channel structure
- Mixed frame lengths
- Advanced Medium Access Control (MAC)

Supports efficient packet operation Supports different quality of service (Q o S)

Source: Tiedemann, E., <u>The Evolution of CDMA</u>, 8th Virginia Tech Symposium on Wireless Personal Communications

Forward Link Spreading

- Multi-Carrier (MC): demultiplexes modulation symbols into N separate 1.25 MHz carriers resulting in a chip rate of 1.2288 Mcps per carrier
- Direct Spread (DS): spreads the modulation symbols to N x 1.2288 Mcps resulting in one N X 1.25 MHz carrier

© 1998, T. S. Rappaport, all rights reserved

Source: Tiedemann, E., The Evolution of CDMA, 8th Virginia Tech Symposium on Wireless Personal Communications

Example Multi-Carrier Deployment in 20MHz

Notes: Can also support five 3.6864 Mcps carriers in 20 MHz

Source: Tiedemann, E., The Evolution of CDMA, 8th Virginia Tech Symposium on Wireless Personal Communications

cdma2000 Deployments

Mix cdma2000 cells (either 1.2288 or 3.6864 Mcps) with existing IS-95 cells to provide higher capacity, higher rates, and new services

Source: Tiedemann, E., The Evolution of CDMA, 8th Virginia Tech Symposium on Wireless Personal Communications

Forward Link Transmit Diversity

Multi=carrier (MCTD)

--Different carriers are radiated by different antennas

Orthogonal transmit diversity (OTD)

--Split forward link channel into two streams that are transmitted over each antenna

--Orthogonal forward link permits signals to be orthogonal between antennas

Time-switched transmit diversity (TSTD)
 --Quickly switch transmissions on a forward channel between antennas

--Orthogonal forward link permits signals to be orthogonal between antennas

Two antenna configuration

Third Generation Questions

* Markets

- --Is there a market?
- --If so, what market?
- --Is this a technology push or a market pull?

* Technology

--What performance gains do we really get over IS-95 or GSM, particularly for voice?

* Standards

--Are we going to have one or two CDMA systems, or can W-CDMA (now UTRA) and cdma2000 converge?

Acknowledgements

Professor Rappaport wishes to extend a thank you to Ms. Anne Dean, research associate at MPRG, who conducted background research to prepare for this presentation.